
Software Engineering

 1 - 1

SOFTWARE and
SOFTWARE ENGINEERING

l Engineered Software

l Controlled Configuration Item

l History of Software

Development

l Software as a Business

Opportunity

l Problems in Software

Development

l Myths about Software

Development

l Approaches to Software

Development

l Engineered Software

Development Models

l Software Engineering

Technology

Objectives of Module 1

l Present and discuss the idea that software is much more than just code --

engineered software is composed of controlled configuration items which

include documents, data, and code

l Present and discuss the history of software development, including its

evolution into a business

l Present and discuss many of the problems with doing software development,

particularly when there is more than one person involved

l Present and discuss many myths about software development and explain why

some of these myths are fallacies

l Present and discuss several different software engineering paradigms,

showing different methods for developing engineered software:

m Classic "waterfall" method

m Rapid prototyping

m Spiral method

m Fourth generation method

m Combinations of the above

l Present and discuss some of the technologies used in the support of software

engineering:

m Computer-Aided Software Engineering (CASE)

m Ada programming language

Software Engineering

 1 - 2

TOPICS

The Nature and History of Software

Development

Problems with Software Development

Software Engineering Paradigms and

Technology

Software Engineering

 1 - 3

THE NATURE OF SOFTWARE

l Characteristics of Software

l Failure Curves for Hardware and Software

l Software Components

l Software Configuration

l Software Application Areas

Software Engineering

 1 - 4

l Software is programs, documents, and data.

l Software is developed or engineered; it is not

manufactured like hardware.

l Software does not wear out, but it does deteriorate.

l Most software is custom-built, rather than being

assembled from existing components.

l Software is a business opportunity.

Characteristics of Software

1. Many people have the non-engineering view of software:

l as computer programs (i.e., source code and/or executables),

l as data structures (e.g., data base schemas), and

l as operation and user documentation (usually created as an

afterthought when the "real" work is done)

2. A major factor in the speed at which quality software is developed is the failure

to reuse software:

l there are few reusable component libraries,

l there is a bias against using "old" routines or routines "not invented

here", and

l software as a creative art is a perception that is held by many people.

3. Software has become a business opportunity, where the success or failure of

a business (and the jobs of the people associated with it) depends upon the

timely development of quality software. The customer is demanding both high

quality in the software (and once a business has a reputation of putting out

"junk", word gets around quickly) and timeliness of delivery (the customer

wants the software now).

Software Engineering

 1 - 5

Failure Curves for
Hardware and Software

Time Time

Failure

Rate

"Infant
Mortality"

"Wear
Out"

Ideal

Actual

Change

FAILURE CURVE
FOR HARDWARE

FAILURE CURVE
FOR SOFTWARE

Hardware tends to have a wear-in time during which it has a higher probability of

failure. This is generally referred to as infant mortality. Once the initial period is

passed, hardware tends to operate without failure until components age enough

to cause breakdown.

Moral

Don't buy extended warranty contracts.

Standard warranty is usually long enough to

pass through the infant mortality period.

Software also shows an early error rate, but updates should remove the most

obvious problems which render the software unreliable. Updates for added

functionality often add more errors, as is shown by the spikes on the failure

curve for software. As updates are made, more latent errors appear in the

software to make it inherently less reliable until the software is finally considered
unreliable enough to stop using the software product or to perform a major

redesign and rewrite of the software.

Software Engineering

 1 - 6

Software Components

l Software programs, or software systems, consist of
components.

l A set of components which comprise a logical unit of software is
called a software configuration item.

l Reuse and development of reliable, trusted software
components improves software quality and productivity.

l Computer language forms:

m Machine level (microcode, digital signal generators)

m Assembly language (PC assembler, controllers)

m High-order languages (FORTRAN, Pascal, C, Ada, ...)

m Specialized languages (LISP, OPS5, Prolog, ...)

m Fourth generation languages (databases, windows apps)

Software Engineering

 1 - 7

Software Configuration

Software
Project

Plan
Software

Requirements

Specification
Software

Design

Software
Test Plan and

Procedures

Data

Structures
and

Dictionary

Code

User

Documents

Composition of Software

The software we develop is composed of these parts, also known as software configuration items:

l Software Project Plan - A document which details the tasks, schedules, needed

resources, and approach to carry out development. This is the first document produced

and it includes cost details.

l Software Requirements Specification - A document which identifies what is required of

the software (as opposed to the design document, which describes how to implement the

software). This document includes information on how implementation of the

requirements will be verified (i.e., some initial test considerations). This very important

document is often quite time consuming to produce.

l Software Test Plan and Procedures - A document which describes the test methods,

approaches, procedures, and the support required for testing the software code

components and the integrated software system. This document includes test data and

expected results and is developed during both the requirements definition and design

phases of the project.

l Data Structures and Dictionary - The Data Dictionary documents all data structures and

the definitions of terms, variables, and other items of interest regarding the details of the

data in the system. It supports software design, coding, and maintenance and is

developed during the requirements and design phases.

l Software Design Document - A document which clearly details the behavior and

structure of the system as a whole and each software code component.

l User Documents - These are user guides, reference guides, application notes, and other

items deemed necessary for the users.

l Code - The compilable source code of the system.

Software Engineering

 1 - 8

Software Development Activities

l Planning Activity

m Software Project Plan

l Requirements Definition Activity

m Software Requirements

Specification

m Software Test Plan and

Procedures

m Data Structures and Dictionary

m User Documents

l Design Activity

m Software Design Documents

m Software Test Plan and
Procedures

m Data Structures and Dictionary

l Coding and Testing Activity

m Code

m Software Test Plan and
Procedures

l Delivery and Maintenance Activity

m User Documents

m Others as needed

When are the Software Configuration Items Produced?

l The Software Configuration Items are drafted, reviewed, revised, etc., at many

points throughout the activities performed during the development of the software.

Seldom is a Software Configuration Item felt to be completely finished.

l All Software Configuration Items are placed under configuration control, allowing for

them to be changed and all changes to them to be tracked. Any particular version of

any of the configuration items may be recreated when desired.

l The control of the Software Configuration Items extends from the planning stages of

the project through the maintenance activities -- the entire life of the software.

Software Engineering

 1 - 9

Software Application Domains

l System

m compilers

m editors

m Operating Systems

l Real Time

m machine control

m auto controls

l Business

m databases

m stock management

l Personal Computer

m all non-realtime above

l Embedded

m appliance control

m FPGA programs

m auto controls

l Engineering and Scientific

m simulation

m computer-aided design

m "number crunching"

l Artificial Intelligence

m expert systems

m neural networks

There are many, many diverse application domains in which software is being

developed, and, for each domain and each organization within each domain,

there are many, many different ways to develop this software:

l ad hoc, which is by far the most common

l using different accepted engineering methodologies, such as

m the classic "waterfall" approach

m rapid prototyping

m fourth generation techniques

m the spiral model

m a combination of the above

l using different sets of procedures, which include

m documentation standards

m coding standards

m test standards

m procedures for estimating cost and schedule

Software Engineering

 1 - 10

HISTORY OF
SOFTWARE DEVELOPMENT

l Role of Software

l Industrial View

Software Engineering

 1 - 11

Role of Software

1950 1960 1970 1980 1990

First Era

Second Era

Third Era

Fourth EraBatch Oriented

Limited

Distribution

Custom Software

Multiuser

Real-Time

Database

Product Software

Distributed
Systems

Embedded

Smarts

Low-Cost
Hardware

Consumer

Impact

Desk-Top Systems

Object Orientation

Expert Systems

Neural Nets

Parallel Computing

The explosive growth of computer speeds

and capabilities at a very low cost
fuels the demand for very complex
software and increases customer

expectations.

1. Early years (to about 1970):

l large, expensive, few, protected computers

l small programs inefficiently written

l major constraints (memory, speed, I/O)

l non-realtime batch-oriented software; single user

l single programmer per program

2. Middle years (1970 to 1990):

l realtime software development

l multiple programmer teams

l software development industry emerges

l emerging interest in engineering the development of software

l department-level computers make them more accessible; multiuser

3. Later years (1980 to 1990):

l personal computer makes computing highly accessible

l very large software industry develops

l large programs and software systems emerge

l hardware is distributed using networks

l communications using computers evolves

l software becomes highly departmentalized

Software Engineering

 1 - 12

Role of Software, Continued
Where Do We Go From Here?

l Parallel computing to extend
speed of computation

l Object-oriented methods of
software design

l Software frameworks evolve to
handle larger and multiprogram

systems

l Heavy dependence on graphics
interfaces

l Artificial intelligence and neural

computing become useful

l National computing motivates
huge software systems

l Advanced programming

languages

l One concept which dominates all of these ideas is that high quality software is

required in all cases.

l The software engineering community has learned that two things are needed

to develop high quality software:

m a good software development process

m technological innovations which support the selected process

l Technology alone, without the process, is not enough and often adds to the

risk and the problems rather than reducing the risk and the problems.

Software Engineering

 1 - 13

Industrial View l Why does it take so

long to finish a

working software

system?

l Why are development

costs so high?

l Why can't we find all

software errors before

software is delivered?

l How can we measure

the progress of

software

development?

l How can we survive in

the global economy?

1. Early software development was considered to be an "art form"

2. Formal methods did not exist or were not followed

3. Programming education mainly by trial and error

4. Example of problems: Operating System for the IBM 360 (data extracted from The

Mythical Man-Month by Fredrick Brooks, Addison-Wesley, 1975)

l large software product (almost 1 million lines of code)

l as errors were fixed, more errors were produced

l adding people to the project made things worse

l few formal methods of design were known or used

l project was abandoned and the operating system was completely rewritten

l project had a major impact on producing formal methods in software

engineering

Software Engineering

 1 - 14

PROBLEMS WITH
SOFTWARE DEVELOPMENT

l Problems

l Causes

Software Engineering

 1 - 15

Problems

1. We have little data on the software
development process.

2. Customers are often dissatisfied with the

software they get.

3. Software quality is hard to define and
measure.

4. Existing software is often very difficult to
maintain.

Can these problems be
overcome?

l Historically, measurements of software development were not done, so we did not

gather any data from past experiences to use in predicting the schedules and costs

of future projects.

l Customer needs were usually understood only vaguely. Consequently, programs

often fell short of the customers' desires.

l A solid quantification of the metrics associated with the software does not exist, so

it becomes difficult to predict software quality.

l Maintenance has become the most expensive, difficult, and poorly planned task of

the entire software life cycle.

Software Engineering

 1 - 16

Causes

l No spare parts to replace, so an error in the

original software is also in every copy.

l Software quality is a human problem.

l Project managers often have no software
development experience.

l Software developers often have little or no
formal training in engineering the development

of the software product.

l Resistance to change from programming as an
art to programming as an engineering task can

be significant.

Software Engineering

 1 - 17

SOFTWARE MYTHS

l Customer Myths

l Developer Myths

l Management Myths

Software Engineering

 1 - 18

Myth

l A general statement of
objectives is enough to get
going. Fill in the details later.

l Project requirements continually
change, but change can be
easily accommodated because
software is flexible.

Reality

l Poor up-front definition of
the requirements is THE
major cause of poor and late
software.

l Cost of the change to
software in order to fix an
error increases dramatically
in later phases of the life of
the software.

1x 1.5-6x 60-100x

Cost
to

Change

Definition Development Maintenance

Customer Myths

Software Engineering

 1 - 19

Developer Myths

Myth

l Once a program is written
and works, the developer's
job is done.

l Until a program is running,
there is no way to assess its
quality.

l The only deliverable for a
successful project is a

working program.

Reality

l 50%-70% of the effort
expended on a program
occurs after it is delivered to
the customer.

l Software reviews can be more
effective in finding errors than
testing for certain classes of
errors.

l A software configuration
includes documentation,
regeneration files, test input
data, and test results data.

Software Engineering

 1 - 20

Management Myths

Myth

l Books of standards exist in
-house so software will be
developed satisfactorily.

l Computers and software
tools that are available in-
house are sufficient.

l We can always add more
programmers if the project
gets behind.

Reality

l Books may exist, but they
are usually not up to date
and not used.

l CASE tools are needed but
are not usually obtained or
used.

l "Adding people to a late
software project makes it
later." -- Brooks

Software Engineering

 1 - 21

SOFTWARE ENGINEERING PARADIGMS

l Life Cycle

l Prototyping Model

l Spiral Model

l Fourth Generation Techniques

l Combining Paradigms

l Generic Paradigm

Software Engineering

 1 - 22

System
Engineering

Analysis

Design

Coding

Testing

Maintenance

Life Cycle

Classic "Waterfall" Model

This model is a systematic, sequential approach to software development. It is the oldest

and most often used of all software engineering paradigms.

l System Engineering - Establish requirements for the software as a part of the larger

system. Determine which parts of the entire system are to be allocated to software.

l Analysis - Establish requirements from the point of view of the software. Include

functional, performance, and interface requirements for the software subsystem.

l Design - Define the software architecture, procedural details, data structures, and

interface characteristics for the software. The design process plans the implementation

of the software to meet the requirements. Rapid prototyping and automated analysis of

the design may come into play. The design of the software presents enough

information so that a programmer who does not necessarily know how the system works

can create code.

l Coding - The translation of a design into a compilable form. If the design is sufficiently

detailed and adequate technologies are available, coding may be automatic.

l Testing - Analysis and verification that codes statements are fully compliant with the

requirements and the customer's intent.

l Maintenance - The process of continuing to support the system after it is released to

the customer. This process often involves several types of activities:

m Corrective Maintenance - fixing errors

m Adaptive Maintenance - changing the software to run in different environments

(such as new versions of an OS or new target platforms)

m Enhancement - adding new features to the software

Software Engineering

 1 - 23

Life Cycle, Continued
System
Engineering

Analysis

Design

Coding

Testing

Maintenance

Is this model realistic?

Problems with the Classic "Waterfall" Model

l Real projects rarely follow strict sequential development.

l It is very difficult to fully state all the requirements up front. The customer

does not often know exactly what his requirements are or does not

provide all the necessary input to fully state the requirements.

l This model demands patience from the customer. Working code is not

available until very late into the project.

Software Engineering

 1 - 24

Prototyping Model

Requirements

Gathering and
Refinement

Quick

Design

Building the
PrototypeEvaluation

of the
Prototype

Refining the

Prototype

Engineer the
Product

Start

Stop

An Iterative Process

l Requirements Gathering and Refinement - During the first loop around this

circle, an initial statement of the requirements is obtained. During later loops,

the requirements statement is revised based on customer feedback.

l Quick Design - Very little time is usually spent on designing the prototype.

Often, aided by workstation-based tools, we transition directly into building the

prototype.

l Building the Prototype - This often involves the aid of software tools.

l Evaluation of the Prototype - The customer and the developers unite in their

efforts to look at the prototype and determine its flaws.

l Refining the Prototype - This step is taken only if the prototype is not

discarded.

l Engineer the Product - This step is taken when the customer and developer

are completely satisfied.

Software Engineering

 1 - 25

Spiral Model
Planning Risk Analysis

EngineeringCustomer Evaluation

Go/ No Go
Decision

Initial

Require-
ments
Gathering

and
Project

Planning

Planning

Based on
Customer
Comments

Evaluations

Risk Analysis

Based on Initial
Requirements

Risk Analysis
Based on

Customer
Reaction

Initial Prototype

Nth-Level Prototype

Engineered
System

Toward a
Completed

System

Start

Iterative Refinement

First Loop

l Start at the center of the spiral; plan the project and gather initial requirements

l Perform a risk analysis based on these initial requirements; make a go/no go

decision; continue if go

l Create an initial prototype of the system

l Customer (and developer) evaluate the prototype

Second Loop

l Feedback from the evaluation is used to refine the requirements and more

project planning is done

l Perform a second risk analysis based on the revised requirements; make a

go/no go decision; continue if go

l Create a second prototype, based either on the initial prototype or built from

scratch

l Customer (and developer) evaluate the second prototype

Nth Loop

l Repeat the Second Loop as desired

After Last Go/No Go Decision

l Engineer the system

Software Engineering

 1 - 26

Fourth Generation Techniques

Requirements
Gathering

"Design"
Strategy

Implementation

Using 4GL

Testing

An Enhancement to the Classic "Waterfall"

First Pass

l Requirements Gathering - Collection of requirements as before

l "Design Strategy" - Design with 4th Generation Languages is often done

online and is quite similar to coding

l Implementation Using 4GL - Coding

l Testing - Testing as before, with customer and developer evaluation

Iterations

l Reenter the waterfall where required as indicated by the evaluation

Software Engineering

 1 - 27

Combining Paradigms
Preliminary Requirements Gathering

Requirements

Analysis

Prototyping 4GT Spiral

Model

Design

Coding

Testing

4GT

Prototyping

Nth Iteration

4GT

Spiral

Model,

Nth Iteration

Operational System

and Maintenance

Applying Different Paradigms

to Different Parts of the System

Preliminary Requirements Gathering

l A preliminary statement of requirements for the entire project is initially

obtained

l Based on this statement of requirements, different methods are applied to

different parts of the system as is deemed reasonable by the developer

and the customer

Movement Through Each Method

l Different parts of the system are developed independently

l Integration may be a high risk area, so integration testing must be

thorough

Software Engineering

 1 - 28

Generic Paradigm

1. DEFINITION PHASE

l System Analysis
l Software Project Planning

l Requirements Analysis

2. DEVELOPMENT PHASE
l Software Design

l Coding
l Software Testing

3. MAINTENANCE PHASE
l Correction

l Adaptation
l Enhancement

Common Phases for All Methods

Definition Phase

l All methods involve an analysis of the system in which the software

resides, the gathering of the requirements for the software, and the

planning of the development of the software

l Plan the development and get an initial understanding of the

requirements

Development Phase

l Design, code, and test the software

Maintenance Phase

l Support the software after it is released to the customer; there are often

three kinds of maintenance to be performed:

m Corrective Maintenance - fix defects uncovered in the software

m Adaptive Maintenance - change the software to run under

different environments, such as new versions of an operating

system

m Enhancement - extend the capabilities of the software

Software Engineering

 1 - 29

SOFTWARE ENGINEERING
TECHNOLOGY

l What is Software Engineering?

l Software Engineering Capability and Its

Measurement

l Ada Technology

Software Engineering

 1 - 30

What Is Software Engineering?

Methods

l Analysis

l Design

l Coding

l Testing

l Maintenance

Procedures

l Project Management

l Software Quality Assurance

l Software Configuration Management

l Measurement

l Tracking

l Innovative Technology Insertion

Computer-Aided Software Engineering (CASE)

l Tools which support the Methods and Procedures

The Essence of Software Engineering

Methods

l Methods comprise the techniques used to perform the various phases of

the software development

l Methods are not necessarily documented formally and are often unique

to each organization and its culture

l Once a method is selected for a project, automated facilities may come

into play to support the method; a common flaw in many organizations is

that automated facilities are sometimes selected first and people then

spend time figuring out how to apply the facility to their methods or adapt

them methods to the facility

Procedures

l Procedures are formal, documented activities performed during the

various phases of the software development

l Personnel with less advanced training are often employed in roles which

implement the various procedures

l Implementation of the procedures is one of the best places to apply

automated techniques

CASE Tools

l Computer-Aided Software Engineering tools can be a valuable aid when

applied to support a well-established method or set of methods

l CASE tools can also introduce a high degree of risk to a project if the

organization is immature in its methods

Software Engineering

 1 - 31

Software Engineering Capability
and Its Measurement

l The maturity of an organization's software engineering capability

can be measured in terms of the degree to which the outcome of

the process by which software is developed can be predicted.

m Predict the amount of time required to develop a software

artifact

m Predict the resources (number of people, amount of disk

space, etc.) required to develop a software artifact

m Predict the cost of developing a software artifact

l The process and the technology go hand in hand.

l One method of measurement is the Capability Maturity Model for

Software developed by the Software Engineering Institute.

Capability Maturity Model for Software

This model is defined in two papers from the Software Engineering Institute:

l Paulk, Curtis, Chrissis, et al, Capability Maturity Model for Software,

August, 1991, Report Number CMU/SEI-91-TR-24 and ESD-TR-91-24,

Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA

15213

l Weber, Paulk, Wise, Withey, et al, Key Practices of the Capability Maturity

Model, August, 1991, Report Number CMU/SEI-91-TR-25 and ESD-TR-91-

25, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA

15213

Software Engineering

 1 - 32

Increasing
Process
Maturity

Initial - Ad hoc;
unpredictable

Repeatable - Costs,
Schedules managed

Defined - Process

institutionalized

Managed - Process

measured/controlled

Optimizing - Process
refined constantly

Some Aspects of Each Level

l Level 1: Initial

m Project outcomes are characterized by frequent cost and schedule overruns

m People are burnt out in the attempt to meet the schedule

l Level 2: Repeatable

m Controls, software quality assurance, and baseline management are in place

m No commitments are made without thorough review

m Given experience with one type of project, probability of repeating the level of

performance (cost, schedule, and quality) on another similar project is high

l Level 3: Defined

m Process for each project is defined in writing at the outset

m SQA monitors compliance with standards and is empowered to intervene

m Project outcomes become more predictable across a broader range of projects

l Level 4: Managed

m Quantitative quality and productivity goals are set for each step in the process

m High predictability is achieved for each step of the process

l Level 5: Optimizing

m Data collected are used to identify weakness and bottlenecks in the process

m Causes of errors are analyzed, and future errors prevented

Software Engineering

 1 - 33

Process Maturity and Technology

PROCESS MATURITY LEVELS

TECHNOLOGY
STAGES

Inefficient

Advanced

Initial

Repeatable

Defined

Managed

Optimizing

Risk

Higher
Risk

Inefficient

Target

Ideal
Transition
Path

State of the Practice

l Corporations in the United States (based on SEI Corporate Affiliates who

voluntarily took the CMM evaluation in 1989) --

m 74% are at Level 1 (Initial)

m 22% are at Level 2 (Repeatable)

m 4% are at Level 3 (Defined)

l Corporations in Japan (based on a visit to Japan by an SEI team in 1990) --

m 95%+ are at Level 1 (Initial)

m 5%- are at Level 2 (Repeatable)

Software Engineering

 1 - 34

Maturity Keys

Maturity Levels

Key Process Areas

Key Practices

Key Indicators

Process
Capability

Expected

Outcomes

Common

Key Features

are composed of

indicate

are estimated byhave or
lack

determineare

structured
by

Common Key Features of the Key Practices include --

l Goals

l Commitment to Perform

l Ability to Perform

l Activities Performed

l Monitoring Implementation

l Verifying Implementation

Software Engineering

 1 - 35

Key Process Areas by Level
Level 2 (Repeatable)

l Requirements Management

l Software Project Planning

l Software Project Tracking and Oversight

l Software Subcontract Management

l Software Quality Assurance

l Software Configuration Management

Goals for Key Process Areas in Level 2

l Requirements Management

m The system requirements allocated to software provide a clearly

stated, verifiable, and testable foundation for software

engineering and software management.

m The allocated requirements define the scope of the software

effort.

m The allocated requirements and changes to the allocated

requirements are incorporated into the software plans, products,

and activities in an orderly manner.

l Software Project Planning

m A plan is developed that appropriately and realistically covers the

software activities and commitments.

m All affected groups and individuals understand the software

estimates and plans and commit to support them.

m The software estimates and plans are documented for use in

tracking the software activities and commitments.

Software Engineering

 1 - 36

Key Process Areas by Level
Level 2 (Repeatable), Continued

l Requirements Management

l Software Project Planning

l Software Project Tracking and Oversight

l Software Subcontract Management

l Software Quality Assurance

l Software Configuration Management

Goals for Key Process Areas in Level 2

l Software Project Tracking and Oversight

m Actual results and performance of the software project are tracked

against documented and approved plans.

m Corrective actions are taken when the actual results and

performance of the software project deviate significantly from the

plans.

m Changes to software commitments are understood and agreed to by

all affected groups and individuals.

l Software Subcontract Management

m The prime contractor selected qualified subcontractors.

m The software standards, procedures, and product requirements for

the subcontract comply with the prime contractor's commitments.

m Commitments between the prime contractor and subcontractor are

understood and agreed to by both parties.

m The prime contractor tracks the subcontractor's actual results and

performance against the commitments.

Software Engineering

 1 - 37

Key Process Areas by Level
Level 2 (Repeatable), Continued

l Requirements Management

l Software Project Planning

l Software Project Tracking and Oversight

l Software Subcontract Management

l Software Quality Assurance

l Software Configuration Management

Goals for Key Process Areas in Level 2

l Software Quality Assurance

m Compliance of the software product and software process

with applicable standards, procedures, and product

requirements is independently confirmed.

m When there are compliance problems, management is aware

of them.

m Senior management addresses noncompliance issues.

l Software Configuration Management

m Controlled and stable baselines are established for planning,

managing, and building the system.

m The integrity of the system's configuration is controlled over

time.

m The status and content of the software baselines are known.

Software Engineering

 1 - 38

Key Process Areas by Level
Level 3 (Defined)

l Organization Process Focus

l Organization Process Definition

l Training Program

l Integrated Software Management

l Software Product Engineering

l Intergroup Coordination

l Peer Reviews

Goals for Key Process Areas in Level 3

l Organization Process Focus

m Current strengths and weaknesses of the organization's

software process are understood and plans are established to

systematically address the weaknesses.

m A group is established with appropriate knowledge, skills, and

resources to define a standard software process for the

organization.

m The organization provides the resources and support needed

to record and analyze the use of the organization's standard

software process in order to maintain and improve it.

l Organization Process Definition

m A standard software process for the organization is defined

and maintained as a basis for stabilizing, analyzing, and

improving the performance of the software projects.

m Specifications of common software processes and

documented process experiences from past and current

projects are collected and available.

Software Engineering

 1 - 39

Key Process Areas by Level
Level 3 (Defined), Continued

l Organization Process Focus

l Organization Process Definition

l Training Program

l Integrated Software Management

l Software Product Engineering

l Intergroup Coordination

l Peer Reviews

Goals for Key Process Areas in Level 3

l Training Program

m The staff and managers have the skills and knowledge to

perform their jobs.

m The staff and managers effectively use, or are prepared to

use, the capabilities and features of the existing and planned

work environment.

m The staff and managers are provided with opportunities to

improve their professional skills.

l Integrated Software Management

m The planning and managing of each software project is based

on the organization's standard software process.

m Technical and management data from past and current

projects are available and used to effectively and efficiently

estimate, plan, track, and replan the software projects.

Software Engineering

 1 - 40

Key Process Areas by Level
Level 3 (Defined), Continued

l Organization Process Focus

l Organization Process Definition

l Training Program

l Integrated Software Management

l Software Product Engineering

l Intergroup Coordination

l Peer Reviews

Goals for Key Process Areas in Level 3

l Software Product Engineering

m Software engineering issues for the product and the process

are properly addressed in the system requirements and

system design.

m The software engineering activities are well-defined,

integrated, and used consistently to produce a software

system.

m State-of-the-practice software engineering tools and methods

are used, as appropriate, to build and maintain the software

system.

l Intergroup Coordination

m The project's technical goals and objectives are understood

and agreed to by its staff and managers.

m The responsibilities assigned to each of the project groups

and the working interfaces between these groups are known

to all groups.

m The project groups are appropriately involved in intergroup

activities and in identifying, tracking, and addressing

intergroup issues.

m The project groups work as a team.

Software Engineering

 1 - 41

Key Process Areas by Level
Level 3 (Defined), Continued

l Organization Process Focus

l Organization Process Definition

l Training Program

l Integrated Software Management

l Software Product Engineering

l Intergroup Coordination

l Peer Reviews

Goals for Key Process Areas in Level 3

l Peer Reviews

m Product defects are identified and fixed early in the life cycle.

m Appropriate product improvements are identified and

implemented early in the life cycle.

m The staff members become more effective through a better

understanding of their work products and knowledge of errors

that can be prevented.

m A rigorous group process for reviewing and evaluating product

quality is established and used.

Software Engineering

 1 - 42

Key Process Areas by Level
Level 4 (Managed)

l Process Measurement and Analysis

l Quality Management

Goals for Key Process Areas in Level 4

l Process Measurement and Analysis

m The organization's standard software process is stable and

under statistical process control.

m The relationship between product quality, productivity, and

product development cycle time is understood in quantitative

terms.

m Special causes of process variation (i.e., variations attributable

to specific applications of the process and not inherent in the

process) are identified and controlled.

l Quality Management

m Measurable goals and priorities for product quality are

established and maintained for each software project through

interaction with the customer, end users, and project groups.

m Measurable goals for process quality are established for all

groups involved in the software process.

m The software plans, design, and process ar adjusted to bring

forecasted process and product quality in line with the goals.

m Process measurements are used to manage the software

project quantitatively.

Software Engineering

 1 - 43

Key Process Areas by Level
Level 5 (Optimizing)

l Defect Prevention

l Technology Innovation

l Process Change Management

Goals for Key Process Areas in Level 5

l Defect Prevention

m Sources of product defects that are inherent or repeatedly occur in the

software process activities are identified and eliminated.

l Technology Innovation

m The organization has a software process and technology capability to

allow it to develop or capitalize on the best available technologies in the

industry.

m Selection and transfer of new technology into the organization is orderly

and thorough.

m Technology innovations are tied to quality and productivity improvements

of the organization's standard software process.

l Process Change Management

m The organization's staff and managers are actively involved in setting

quantitative, measurable improvements goals and in improving the

software process.

m The organization's standard software process and the projects' defined

software processes continually improve.

m The organization's staff and managers are able to use the evolving

software processes and their supporting tools and methods properly and

effectively.

Software Engineering

 1 - 44

Ada Technology
l Ada is a computer programming language specifically designed to

support software engineering.

l Some of Ada's features include:

m All of the normal constructs for looping, branching, flow control,
and subprogram construction

m Support for enumeration types, integers, floating point, fixed point,
characters, strings, arrays, records, and user-defined data types

m Support for algorithm templates (called generics) which allow
algorithms to be expressed without concern for the kind of data on
which the algorithm is applied

m Support for interrupts and concurrent processing

m Support for low-level control, such as memory allocation

l Ada is a design language as well as a programming language.

l Ada is designed to be read by Ada programmers and non-
programmers.

Ada

The Ada programming language is defined in detail in:

ANSI/MIL-STD-1815A, Ada Programming Language, 22 January

1983, United States Department of Defense, Under Secretary for
Defense, Research, and Engineering

To further understand the reasoning behind the choices made in the design of
Ada, the following document is highly recommended:

Ichbiah, Barnes, Firth, Woodger, Rationale for the Design of the Ada
Programming Language, 1986, Honeywell Systems and

Research Center, MN65-2100, 3660 Technology Drive,

Minneapolis, MN 55418 and Alsys, 29 Avenue de Versailles,

78170 La Celle Saint Cloud, France

Software Engineering

 1 - 45

Ada Technology, Continued

Ada
Specification

with System;

package Sensor is

 type Device is private;

 -- Abstract concept of a sensor

 procedure Define (S : in out Device;

 Where : in System.Address);

 -- Associate a sensor with memory

 function Read(S : in Device)

 return Integer;

 -- Return sensed value

private

 -- details omitted

end Sensor;

Ada Code Example

This is an example of an Ada package which defines a class of objects of type

Sensor.Device.

This code example is incomplete. The details of the private section of the

package specification are omitted, and the package body, in which the

procedure Define and the function Read are implemented, is not shown.

Software Engineering

 1 - 46

Ada Technology, Continued

l From the software engineering perspective, Ada helps by acting
as something much more than a programming language; Ada can

be used as a common language for communicating:

m Some aspects of the requirements

m Some aspects of the design

m All aspects of the code

l In particular, by using Ada as a design language, code is simply

realized as a complete, detailed elaboration of a design.

l For large, multi-person teams, Ada can be used as an exact,
precise way to communicate requirements and design information

-- often in a form which may be syntactically checked by a
compiler. Ada is much better than conventional English in this
regard.

Suggested Reading

l Grady Booch, Object Oriented Design with Applications, 1991, The

Benjamin/Cummings Publishing Company, Inc., ISBN 0-8053-0091-0

l Grady Booch, Software Components with Ada, 1987, The

Benjamin/Cummings Publishing Company, Inc., ISBN 0-8053-0610-2

l Grady Booch, Software Engineering with Ada, 1987, The

Benjamin/Cummings Publishing Company, Inc., ISBN 0-8053-0604-8

l R.J.A. Buhr, System Design with Ada, 1984, Prentice-Hall, Inc., ISBN 0-

13-881623-9

l David Naiditch, Rendezvous with Ada: A Programmer's Introduction,

1989, John Wiley & Sons, ISBN 0-471-61654-0

l The Software Productivity Consortium, Ada Quality and Style:
Guidelines for Professional Programmers, 1989, Van Nostrand

Reinhold, ISBN 0-442-23805-3

